V = 1139.3 (4) Å³

Mo $K\alpha$ radiation $\mu = 0.95 \text{ mm}^{-1}$

 $0.20 \times 0.15 \times 0.11 \ \mathrm{mm}$

4602 independent reflections

4356 reflections with $I > 2\sigma(I)$

Z = 2

T = 293 K

 $R_{\rm int}=0.022$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5dinitrobenzoate

Chun-Lan Zhang^a and Fang-Fang Jian^{b*}

^aMicroscale Science Institute, Biology Department, Weifang University, Weifang 261061, People's Republic of China, and ^bMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China Correspondence e-mail: ffjian2008@163.com

Received 29 October 2009; accepted 2 November 2009

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.024; wR factor = 0.057; data-to-parameter ratio = 13.0.

The title compound, $[Ag(C_9H_7NO)_2](C_7H_3N_2O_7)$, was prepared from 3,5-dinitrosalicylic acid (DNS), quinolin-8-ol and AgNO₃. The Ag^I atom is coordinated by two N atoms and two O atoms from two quinolin-8-ols in a roughly planar [maximum deviation = 0.223 (2) Å] environment. The two quinolin-8-ol ligands are bent slightly with respect to each other, making a dihedral angle of 9.55 (9)°. The DNS anion interacts with the silver complex through O-H···O hydrogen bonds

Related literature

For related structures, see: Smith & Thomasson (1999); Smith et al. (2001); Wu et al. (2006).

Experimental

Crystal data

$Ag(C_{2}H_{2}NO)a](C_{2}H_{2}N_{2}O_{2})$	
M = 625.30	
$M_r = 025.50$	
P_{2_1}	
a = 9.0154 (18) Å	
p = 7.6122 (15) A	
: = 17.138 (3) Å	
$3 = 104.38(3)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: none 10841 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	H-atom parameters constrained
$wR(F^2) = 0.057$	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.09	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
4602 reflections	Absolute structure: Flack (1983),
353 parameters	1770 Friedel pairs
1 restraint	Flack parameter: 0.006 (18)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01 - H1AA \cdots O8$	1.00	1.60	2.602 (3)	175
$02 - H2AA \cdots O9$	0.77	1.88	2.636 (3)	168
$O3 - H3B \cdots O9$	0.82	1.74	2.483 (3)	150

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2508).

References

- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Smith, G. & Thomasson, J. H. (1999). Aust. J. Chem. 52, 317-324.

Smith, G., Wermuth, U. D. & White, J. M. (2001). Aust. J. Chem. 54, 171-175. Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281m282

Acta Cryst. (2009). E65, m1521 [doi:10.1107/S1600536809045905]

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate

C.-L. Zhang and F.-F. Jian

Comment

Quinolin-8-ol [quinolin-8-ol (oxine)] is well known as a particularly versatile ligand for use in metal complex chemistry (G. Smith, *et al.*,2001). It is also known that most of Ag^{I} in biological systems is not in the form of free Ag^{I} ions, but is coordinated by the abundance of biological ligands (Wu, *et al.*,2006). As part of our search for new biologically active compounds the title compound has been synthesized and we report its crystal structure here.

Scheme I

The Ag^I atom is coordinated by two N atoms and two O atoms from two quinolin-8-ols in a roughly planar environment with the largest deviation from the mean plane of the non H atoms being 0.223 (2)Å at C14 (Fig. 1). However, the two quinolin-8-ols are slightly bent with respect to each other making a dihedral angle of 9.55 (9)°. In the DNS anion, the NO₂ and CO₂ groups are twisted with respect to the phenyl ring making dihedral angles of of 29.5 (1)° for C21, N4, O6, O7, 10.7 (2)° for C19, N3, O4, 05 and 10.0 (2)° for C23, C25, O8, O9. All of the bond lengths and bond angles are in normal ranges (Smith, *et al.*,1999; Smith, *et al.*,2001; Wu, *et al.*, 2006).

There are O—H…O hydrogen-bond interactions between two quinolin-8-ol and DNS which stabilize the crystal structure (Table 1, Fig. 1).

Experimental

The title compound(I) was prepared by the process as following: A mixture of 3,5-Dinitrosalicylic acid (0.01 mol), salt of quinolin-8-ol and sulfuric acid (0.02 mol) was stirred in distilled water (30 ml) for 3 h to obtain yellow deposit. A mixture of the deposit and AgNO3(0.01 mol) was stirred in ethanol (20 ml) at 353 K for 5 h, then afford the title compound (yield 83%). Single crystals suitable for X-ray measurements were obtailed by recrystallization from ethanol at room temperature.

Refinement

H atoms were included in calculated positions, with C—H distances constrained to 0.93Å (aromatic CH) and O—H distances constrained to 0.86Å and with $U_{iso}=1.2-1.5U_{eq}$.

Figures

Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.

Bis(quinolin-8-ol)silver(I) 2-hydroxy-3,5-dinitrobenzoate

Crystal data
[Ag(C ₉ H ₇ NO) ₂](C ₇ H ₃ N ₂ O ₇)
$M_r = 625.30$
Monoclinic, $P2_1$

Hall symbol: P 2yb a = 9.0154 (18) Å b = 7.6122 (15) Å c = 17.138 (3) Å $\beta = 104.38$ (3)° V = 1139.3 (4) Å³

$F_{000} = 628$
$D_{\rm x} = 1.823 {\rm Mg m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 4356 reflections
$\theta = 3.6 - 27.6^{\circ}$
$\mu = 0.95 \text{ mm}^{-1}$
T = 293 K
Block, yellow
$0.20\times0.15\times0.11~mm$

Data collection

Z = 2

Bruker SMART CCD area-detector diffractometer	4356 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.022$
Monochromator: graphite	$\theta_{\text{max}} = 27.6^{\circ}$
T = 293 K	$\theta_{\min} = 3.6^{\circ}$
φ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: none	$k = -9 \rightarrow 8$
10841 measured reflections	<i>l</i> = −22→22
4602 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.024$	$w = 1/[\sigma^2(F_o^2) + (0.028P)^2 + 0.3633P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.057$	$(\Delta/\sigma)_{max} < 0.001$
S = 1.09	$\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^{-3}$

4602 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$
353 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1770 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.006 (18)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ag1	0.062198 (19)	0.74284 (3)	0.668865 (11)	0.01870 (6)
01	-0.0991 (2)	0.4624 (3)	0.64039 (12)	0.0199 (4)
H1AA	-0.0950	0.3450	0.6670	0.030*
O2	0.1744 (2)	0.5065 (3)	0.77201 (12)	0.0217 (4)
H2AA	0.1409	0.4170	0.7790	0.033*
N1	-0.1155 (2)	0.7669 (4)	0.55612 (13)	0.0174 (5)
N2	0.2684 (3)	0.8371 (3)	0.75436 (14)	0.0163 (5)
C1	-0.1281 (3)	0.9178 (4)	0.51463 (19)	0.0223 (6)
H1A	-0.0613	1.0090	0.5354	0.027*
C2	-0.2364 (4)	0.9449 (4)	0.44186 (18)	0.0246 (6)
H2A	-0.2410	1.0519	0.4152	0.030*
C3	-0.3353 (3)	0.8132 (4)	0.41024 (19)	0.0211 (6)
H3A	-0.4080	0.8297	0.3618	0.025*
C4	-0.3269 (3)	0.6506 (4)	0.45167 (18)	0.0170 (6)
C5	-0.4267 (3)	0.5080 (4)	0.42261 (17)	0.0209 (6)
H5A	-0.5013	0.5186	0.3744	0.025*
C6	-0.4132 (3)	0.3552 (4)	0.46543 (18)	0.0214 (6)
H6A	-0.4774	0.2614	0.4454	0.026*
C7	-0.3036 (3)	0.3371 (4)	0.53957 (17)	0.0187 (6)
H7A	-0.2977	0.2327	0.5683	0.022*
C8	-0.2059 (3)	0.4719 (4)	0.56950 (16)	0.0149 (5)
C9	-0.2140 (3)	0.6332 (4)	0.52566 (16)	0.0141 (5)
C10	0.3161 (3)	0.9992 (4)	0.74638 (17)	0.0187 (6)
H10A	0.2572	1.0697	0.7061	0.022*
C11	0.4512 (3)	1.0703 (4)	0.79573 (19)	0.0222 (6)
H11A	0.4807	1.1847	0.7878	0.027*
C12	0.5375 (3)	0.9694 (4)	0.85498 (18)	0.0210 (6)

H12A	0.6277	1.0140	0.8878	0.025*
C13	0.4907 (3)	0.7962 (4)	0.86706 (17)	0.0172 (6)
C14	0.5745 (3)	0.6843 (4)	0.92847 (17)	0.0199 (6)
H14A	0.6655	0.7235	0.9626	0.024*
C15	0.5225 (3)	0.5197 (4)	0.93780 (17)	0.0206 (6)
H15A	0.5776	0.4479	0.9788	0.025*
C16	0.3864 (3)	0.4567 (4)	0.88625 (17)	0.0177 (6)
H16A	0.3520	0.3443	0.8937	0.021*
C17	0.3044 (3)	0.5596 (4)	0.82523 (16)	0.0144 (5)
C18	0.3541 (2)	0.7342 (6)	0.81437 (14)	0.0140 (4)
O3	0.1402 (2)	-0.0140 (3)	0.92529 (13)	0.0260 (5)
H3B	0.1405	0.0793	0.9015	0.039*
O4	-0.4152 (2)	-0.3754 (3)	0.69128 (14)	0.0284 (5)
O5	-0.3271 (2)	-0.5962 (3)	0.76855 (13)	0.0273 (5)
O6	0.1239 (2)	-0.5246 (3)	0.98348 (12)	0.0211 (4)
O7	0.1678 (2)	-0.2656 (4)	1.03550 (11)	0.0289 (4)
O8	-0.0981 (2)	0.1498 (3)	0.70194 (12)	0.0242 (5)
09	0.0667 (2)	0.2136 (3)	0.81890 (12)	0.0198 (5)
N3	-0.3217 (2)	-0.4436 (3)	0.74770 (14)	0.0173 (5)
N4	0.1088 (2)	-0.3646 (3)	0.98082 (14)	0.0151 (5)
C19	-0.1971 (3)	-0.3338 (4)	0.79249 (18)	0.0131 (6)
C20	-0.1028 (3)	-0.3990 (3)	0.86303 (16)	0.0128 (5)
H20A	-0.1152	-0.5127	0.8803	0.015*
C21	0.0095 (3)	-0.2909 (3)	0.90660 (15)	0.0118 (6)
C22	0.0328 (3)	-0.1188 (4)	0.88193 (16)	0.0131 (5)
C23	-0.0605 (3)	-0.0602 (3)	0.80700 (16)	0.0130 (5)
C24	-0.1769 (3)	-0.1677 (4)	0.76339 (18)	0.0137 (6)
H24A	-0.2405	-0.1286	0.7152	0.016*
C25	-0.0306 (3)	0.1145 (4)	0.77252 (16)	0.0150 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Ag1	0.01624 (8)	0.01725 (9)	0.01946 (9)	-0.00342 (12)	-0.00152 (6)	0.00022 (11)
01	0.0213 (10)	0.0127 (9)	0.0199 (10)	-0.0063 (8)	-0.0062 (8)	0.0045 (7)
O2	0.0185 (9)	0.0169 (10)	0.0244 (11)	-0.0079 (8)	-0.0046 (8)	0.0028 (8)
N1	0.0194 (9)	0.0143 (15)	0.0179 (10)	-0.0003 (11)	0.0034 (8)	0.0009 (10)
N2	0.0138 (10)	0.0164 (12)	0.0191 (12)	-0.0018 (9)	0.0047 (9)	0.0005 (9)
C1	0.0256 (14)	0.0145 (13)	0.0262 (16)	-0.0040 (13)	0.0053 (12)	0.0045 (11)
C2	0.0331 (16)	0.0181 (15)	0.0238 (16)	0.0071 (14)	0.0092 (13)	0.0106 (12)
C3	0.0216 (13)	0.0248 (14)	0.0156 (15)	0.0061 (12)	0.0021 (11)	0.0024 (11)
C4	0.0139 (12)	0.0219 (15)	0.0152 (14)	0.0027 (11)	0.0036 (10)	0.0011 (12)
C5	0.0161 (13)	0.0293 (16)	0.0149 (14)	0.0008 (13)	-0.0007 (10)	-0.0035 (12)
C6	0.0154 (13)	0.0245 (15)	0.0215 (15)	-0.0088 (12)	-0.0008 (10)	-0.0052 (12)
C7	0.0181 (13)	0.0179 (15)	0.0188 (14)	-0.0042 (11)	0.0023 (10)	0.0014 (11)
C8	0.0142 (12)	0.0145 (13)	0.0143 (13)	0.0003 (11)	0.0002 (10)	0.0000 (10)
C9	0.0142 (12)	0.0143 (13)	0.0135 (13)	-0.0007 (11)	0.0030 (9)	0.0009 (10)
C10	0.0208 (13)	0.0172 (14)	0.0199 (15)	-0.0023 (12)	0.0082 (11)	0.0027 (11)

C11	0.0261 (14)	0.0167 (14)	0.0257 (16)	-0.0085 (13)	0.0098 (12)	-0.0039 (12)
C12	0.0182 (13)	0.0228 (15)	0.0231 (15)	-0.0110 (12)	0.0071 (11)	-0.0096 (12)
C13	0.0141 (11)	0.0225 (15)	0.0162 (13)	-0.0030 (10)	0.0064 (10)	-0.0058 (10)
C14	0.0112 (11)	0.0293 (15)	0.0177 (14)	-0.0033 (11)	0.0005 (10)	-0.0069 (10)
C15	0.0138 (12)	0.0278 (16)	0.0181 (14)	0.0033 (12)	0.0000 (10)	0.0019 (11)
C16	0.0162 (12)	0.0153 (13)	0.0207 (14)	-0.0018 (11)	0.0032 (10)	-0.0002 (10)
C17	0.0111 (11)	0.0143 (13)	0.0172 (14)	-0.0019 (11)	0.0028 (10)	-0.0028 (10)
C18	0.0113 (9)	0.0151 (11)	0.0166 (11)	0.0013 (17)	0.0052 (8)	0.0003 (15)
O3	0.0224 (10)	0.0222 (11)	0.0283 (12)	-0.0065 (9)	-0.0032 (9)	0.0033 (9)
O4	0.0209 (10)	0.0281 (12)	0.0268 (12)	-0.0043 (9)	-0.0115 (8)	-0.0011 (9)
O5	0.0294 (11)	0.0195 (11)	0.0293 (12)	-0.0131 (10)	0.0006 (9)	0.0017 (9)
O6	0.0213 (10)	0.0160 (10)	0.0235 (11)	0.0028 (8)	0.0008 (8)	0.0058 (8)
O7	0.0344 (9)	0.0225 (10)	0.0200 (9)	0.0054 (15)	-0.0118 (7)	-0.0024 (13)
O8	0.0317 (11)	0.0166 (11)	0.0195 (11)	-0.0060 (9)	-0.0027 (8)	0.0065 (8)
O9	0.0211 (8)	0.0132 (14)	0.0224 (9)	-0.0063 (9)	0.0004 (7)	0.0004 (8)
N3	0.0140 (10)	0.0190 (12)	0.0169 (12)	-0.0061 (10)	0.0004 (9)	-0.0041 (9)
N4	0.0115 (10)	0.0166 (12)	0.0153 (11)	0.0017 (9)	-0.0004 (8)	0.0023 (9)
C19	0.0078 (11)	0.0166 (13)	0.0139 (14)	-0.0039 (10)	0.0007 (10)	-0.0040 (11)
C20	0.0160 (12)	0.0084 (12)	0.0140 (13)	-0.0004 (10)	0.0034 (9)	0.0006 (9)
C21	0.0095 (9)	0.0131 (18)	0.0109 (11)	0.0044 (10)	-0.0009 (8)	0.0026 (9)
C22	0.0084 (11)	0.0151 (14)	0.0147 (13)	-0.0009 (10)	0.0011 (9)	-0.0027 (10)
C23	0.0130 (11)	0.0110 (13)	0.0139 (12)	-0.0003 (11)	0.0013 (9)	-0.0003 (10)
C24	0.0122 (12)	0.0145 (14)	0.0142 (14)	0.0023 (11)	0.0028 (10)	0.0010 (11)
C25	0.0151 (12)	0.0110 (12)	0.0182 (14)	0.0005 (11)	0.0030 (10)	0.0009 (10)

Geometric parameters (Å, °)

Ag1—N2	2.183 (2)	C12—C13	1.415 (4)
Ag1—N1	2.190 (2)	C12—H12A	0.9300
Ag1—O2	2.549 (2)	C13—C18	1.415 (4)
Ag1—O1	2.561 (2)	C13—C14	1.417 (4)
O1—C8	1.352 (3)	C14—C15	1.361 (4)
O1—H1AA	0.9999	C14—H14A	0.9300
O2—C17	1.355 (3)	C15—C16	1.406 (4)
O2—H2AA	0.7666	C15—H15A	0.9300
N1-C1	1.341 (4)	C16—C17	1.367 (4)
N1—C9	1.366 (4)	C16—H16A	0.9300
N2—C10	1.325 (4)	C17—C18	1.430 (5)
N2—C18	1.368 (4)	O3—C22	1.330 (3)
C1—C2	1.395 (4)	O3—H3B	0.8193
C1—H1A	0.9300	O4—N3	1.229 (3)
C2—C3	1.361 (5)	O5—N3	1.220 (3)
C2—H2A	0.9300	O6—N4	1.225 (3)
C3—C4	1.420 (4)	O7—N4	1.217 (3)
С3—НЗА	0.9300	O8—C25	1.241 (3)
C4—C5	1.419 (4)	O9—C25	1.274 (3)
C4—C9	1.422 (4)	N3—C19	1.457 (3)
C5—C6	1.364 (4)	N4—C21	1.472 (3)
С5—Н5А	0.9300	C19—C20	1.386 (4)

C6—C7	1.409 (4)	C19—C24	1.387 (4)
С6—Н6А	0.9300	C20—C21	1.373 (4)
С7—С8	1.366 (4)	C20—H20A	0.9300
С7—Н7А	0.9300	C21—C22	1.409 (4)
C8—C9	1.432 (4)	C22—C23	1.421 (4)
C10—C11	1.407 (4)	C23—C24	1.393 (4)
C10—H10A	0.9300	C23—C25	1.507 (4)
C11—C12	1.354 (4)	C24—H24A	0.9300
C11—H11A	0.9300		
N2—Ag1—N1	151.54 (9)	C10-C11-H11A	120.6
N2—Ag1—O2	68.97 (8)	C11—C12—C13	120.1 (3)
N1—Ag1—O2	138.45 (9)	C11—C12—H12A	119.9
N2—Ag1—O1	138.63 (8)	C13—C12—H12A	119.9
N1—Ag1—O1	69.23 (8)	C18—C13—C12	117.5 (3)
O2—Ag1—O1	69.67 (6)	C18—C13—C14	119.5 (3)
C8—O1—Ag1	111.74 (16)	C12—C13—C14	123.0 (3)
C8—O1—H1AA	113.3	C15—C14—C13	120.3 (2)
Ag1—O1—H1AA	134.7	C15—C14—H14A	119.8
C17—O2—Ag1	112.59 (16)	C13—C14—H14A	119.8
C17—O2—H2AA	117.9	C14—C15—C16	120.8 (3)
Ag1—O2—H2AA	129.2	C14—C15—H15A	119.6
C1—N1—C9	118.3 (2)	С16—С15—Н15А	119.6
C1—N1—Ag1	119.1 (2)	C17—C16—C15	120.5 (3)
C9—N1—Ag1	122.58 (19)	С17—С16—Н16А	119.7
C10—N2—C18	118.3 (3)	C15—C16—H16A	119.7
C10—N2—Ag1	118.73 (19)	O2—C17—C16	123.9 (3)
C18—N2—Ag1	123.0 (2)	O2—C17—C18	115.9 (2)
N1—C1—C2	123.3 (3)	C16—C17—C18	120.3 (2)
N1—C1—H1A	118.4	N2—C18—C13	121.9 (3)
C2—C1—H1A	118.4	N2-C18-C17	119.6 (2)
C3 - C2 - C1	119.4 (3)	C13—C18—C17	118.6 (3)
C3—C2—H2A	120.3	C22—O3—H3B	109.5
C1—C2—H2A	120.3	05—N3—04	124.3 (2)
C2 - C3 - C4	1196(3)	05 - N3 - C19	118 3 (2)
C2—C3—H3A	120.2	04 - N3 - C19	1174(2)
С4—С3—НЗА	120.2	07—N4—06	124.3 (2)
C5-C4-C3	122.8 (3)	07—N4—C21	119.0 (2)
C5—C4—C9	119.6 (3)	06—N4—C21	116.7 (2)
C3—C4—C9	117.7 (3)	C20—C19—C24	122.2 (3)
C6—C5—C4	119.9 (3)	C20—C19—N3	118.7 (3)
С6—С5—Н5А	120.0	C24—C19—N3	119.1 (3)
C4—C5—H5A	120.0	C21—C20—C19	118.0 (2)
C5—C6—C7	121.2 (3)	C21—C20—H20A	121.0
С5—С6—Н6А	119.4	C19—C20—H20A	121.0
С7—С6—Н6А	119.4	C20—C21—C22	122.6 (2)
C8—C7—C6	120.5 (3)	C20—C21—N4	116.7 (2)
С8—С7—Н7А	119.8	C22—C21—N4	120.7 (2)
С6—С7—Н7А	119.8	O3—C22—C21	122.2 (2)
O1—C8—C7	123.1 (2)	O3—C22—C23	120.1 (3)
	~ /		× /

O1—C8—C9	116.7 (2)	C21—C22—C23	117.7 (2)
С7—С8—С9	120.2 (2)	C24—C23—C22	119.9 (3)
N1—C9—C4	121.7 (2)	C24—C23—C25	119.5 (2)
N1—C9—C8	119.7 (2)	C22—C23—C25	120.5 (2)
C4—C9—C8	118.6 (2)	C19—C24—C23	119.4 (3)
N2-C10-C11	123.4 (3)	C19—C24—H24A	120.3
N2-C10-H10A	118.3	C23—C24—H24A	120.3
C11-C10-H10A	118.3	O8—C25—O9	125.1 (3)
C12-C11-C10	118.9 (3)	O8—C25—C23	118.7 (2)
C12—C11—H11A	120.6	O9—C25—C23	116.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot$
O1—H1AA···O8	1.00	1.60	2.602 (3)	175
O2—H2AA…O9	0.77	1.88	2.636 (3)	168
O3—H3B…O9	0.82	1.74	2.483 (3)	150

Fig. 1

